A four - dimensional viscoelastic deformation model for Long Valley Caldera , California , between 1995 and 2000 Andrew
نویسندگان
چکیده
We investigate the effects of viscoelastic (VE) rheologies surrounding a vertically dipping prolate spheroid source during an active period of time-dependent deformation between 1995 and 2000 at Long Valley caldera. We model a rapid magmatic inflation episode and slip across the South Moat fault (SMF) in late 1997. We extend the spherical VE shell model of Newman et al. [Newman, A.V., Dixon, T.H., Ofoegbu, G., Dixon, J.E., 2001. Geodetic and seismic constraints on recent activity at Long Valley caldera, California: Evidence for viscoelastic rheology. J. Volcanol. Geotherm. Res. 105, 183–206.] to include a prolate spheroid geometry more accurately representing the probable source geometry inferred from other studies. This paper presents the first attempt to geodetically constrain the volcanic deformation source volume at Long Valley, a parameter for hazard assessment. Including fault slip along the SMF explains significant deformation observed with several EDM baselines and components of two continuous GPS time series. Additionally, the model explains the spatial extent of deformation observed by InSAR data covering the 1997–98 inflation episode. For the time period studied, the VE model requires modest pressure changes (maximum of 14.3 MPa) that are far lower than the overburden pressure (~115 MPa), and less than the maximum for a purely elastic model with the same geometry and elastic strength (~45 MPa). Thus, the inclusion of a realistic VE component significantly lowers the inferred pressures necessary to explain observed surface deformation. Though our model is non-unique, it is consistent with a broader variety of data compared to purely elastic models. Only right-lateral slip, and not dilitation, was necessary to explain offsets in EDM data near and crossing the SMF. D 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Spatio-temporal evolution of Yellowstone deformation between 1992 and 2009 from InSAR and GPS observations
In this study, the spatio-temporal evolution of Yellowstone deformation between 1992 and 2009 is monitored using interferometric synthetic aperture radar (InSAR) data acquired by the European Remote-Sensing Satellites (ERS-1 and ERS-2) and the Environmental Satellite (ENVISAT). These data are combined with continuous global positioning system (GPS) measurements to identify four discrete episode...
متن کاملCrustal deformation of the Yellowstone–Snake River Plain volcano-tectonic system: Campaign and continuous GPS observations, 1987–2004
[1] The Yellowstone–Snake River Plain tectonomagmatic province resulted from Late Tertiary volcanism in western North America, producing three large, caldera-forming eruptions at the Yellowstone Plateau in the last 2 Myr. To understand the kinematics and geodynamics of this volcanic system, the University of Utah conducted seven GPS campaigns at 140 sites between 1987 and 2003 and installed a n...
متن کاملDynamic response determination of viscoelastic annular plates using FSDT – perturbation approach
In this paper, the transient response of a viscoelastic annular plate which has time-dependent properties is determined mathematically under dynamic transverse load. The axisymmetric conditions are considered in the problem. The viscoelastic properties obey the standard linear solid model in shear and the bulk behavior in elastic. The equations of motion are extracted using Hamilton’s principle...
متن کاملVolcano Monitoring Techniques and their Implications for the Forecasting and Prediction of Current and Future Volcanism in the Long Valley Caldera; South Eastern California
متن کامل
Refined kinematics of the Eastern California shear zone from GPS observations, 1993-1998
Global Positioning System (GPS) results from networks spanning the Eastern California shear zone and adjacent Sierra Nevada block, occupied annually between 1993 and 1998, constrain plate margin kinematics. We use an elastic block model to relate GPS station velocities to long-term fault slip rate estimates. The model accounts for elastic strain accumulation on the San Andreas fault, as well as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006